\(\int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx\) [197]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 210 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=-\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {29 e^2 \sqrt {d^2-e^2 x^2}}{3 d^6 x}+\frac {18 e^3 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d^6} \]

[Out]

-8/5*e^3*(-e*x+d)/d^2/(-e^2*x^2+d^2)^(5/2)-4/5*e^3*(-6*e*x+5*d)/d^4/(-e^2*x^2+d^2)^(3/2)+18*e^3*arctanh((-e^2*
x^2+d^2)^(1/2)/d)/d^6-1/5*e^3*(-93*e*x+80*d)/d^6/(-e^2*x^2+d^2)^(1/2)-1/3*(-e^2*x^2+d^2)^(1/2)/d^4/x^3+2*e*(-e
^2*x^2+d^2)^(1/2)/d^5/x^2-29/3*e^2*(-e^2*x^2+d^2)^(1/2)/d^6/x

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {866, 1819, 1821, 821, 272, 65, 214} \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=\frac {18 e^3 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d^6}-\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {29 e^2 \sqrt {d^2-e^2 x^2}}{3 d^6 x}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}} \]

[In]

Int[Sqrt[d^2 - e^2*x^2]/(x^4*(d + e*x)^4),x]

[Out]

(-8*e^3*(d - e*x))/(5*d^2*(d^2 - e^2*x^2)^(5/2)) - (4*e^3*(5*d - 6*e*x))/(5*d^4*(d^2 - e^2*x^2)^(3/2)) - (e^3*
(80*d - 93*e*x))/(5*d^6*Sqrt[d^2 - e^2*x^2]) - Sqrt[d^2 - e^2*x^2]/(3*d^4*x^3) + (2*e*Sqrt[d^2 - e^2*x^2])/(d^
5*x^2) - (29*e^2*Sqrt[d^2 - e^2*x^2])/(3*d^6*x) + (18*e^3*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/d^6

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1819

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d-e x)^4}{x^4 \left (d^2-e^2 x^2\right )^{7/2}} \, dx \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {-5 d^4+20 d^3 e x-35 d^2 e^2 x^2+40 d e^3 x^3-32 e^4 x^4}{x^4 \left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {15 d^4-60 d^3 e x+120 d^2 e^2 x^2-180 d e^3 x^3+144 e^4 x^4}{x^4 \left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^4} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {-15 d^4+60 d^3 e x-135 d^2 e^2 x^2+240 d e^3 x^3}{x^4 \sqrt {d^2-e^2 x^2}} \, dx}{15 d^6} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {\int \frac {-180 d^5 e+435 d^4 e^2 x-720 d^3 e^3 x^2}{x^3 \sqrt {d^2-e^2 x^2}} \, dx}{45 d^8} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {\int \frac {-870 d^6 e^2+1620 d^5 e^3 x}{x^2 \sqrt {d^2-e^2 x^2}} \, dx}{90 d^{10}} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {29 e^2 \sqrt {d^2-e^2 x^2}}{3 d^6 x}-\frac {\left (18 e^3\right ) \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx}{d^5} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {29 e^2 \sqrt {d^2-e^2 x^2}}{3 d^6 x}-\frac {\left (9 e^3\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )}{d^5} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {29 e^2 \sqrt {d^2-e^2 x^2}}{3 d^6 x}+\frac {(18 e) \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )}{d^5} \\ & = -\frac {8 e^3 (d-e x)}{5 d^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {4 e^3 (5 d-6 e x)}{5 d^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {e^3 (80 d-93 e x)}{5 d^6 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{3 d^4 x^3}+\frac {2 e \sqrt {d^2-e^2 x^2}}{d^5 x^2}-\frac {29 e^2 \sqrt {d^2-e^2 x^2}}{3 d^6 x}+\frac {18 e^3 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d^6} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=-\frac {\frac {d \sqrt {d^2-e^2 x^2} \left (5 d^5-15 d^4 e x+70 d^3 e^2 x^2+674 d^2 e^3 x^3+1002 d e^4 x^4+424 e^5 x^5\right )}{x^3 (d+e x)^3}-270 \sqrt {d^2} e^3 \log (x)+270 \sqrt {d^2} e^3 \log \left (\sqrt {d^2}-\sqrt {d^2-e^2 x^2}\right )}{15 d^7} \]

[In]

Integrate[Sqrt[d^2 - e^2*x^2]/(x^4*(d + e*x)^4),x]

[Out]

-1/15*((d*Sqrt[d^2 - e^2*x^2]*(5*d^5 - 15*d^4*e*x + 70*d^3*e^2*x^2 + 674*d^2*e^3*x^3 + 1002*d*e^4*x^4 + 424*e^
5*x^5))/(x^3*(d + e*x)^3) - 270*Sqrt[d^2]*e^3*Log[x] + 270*Sqrt[d^2]*e^3*Log[Sqrt[d^2] - Sqrt[d^2 - e^2*x^2]])
/d^7

Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.03

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}\, \left (29 e^{2} x^{2}-6 d e x +d^{2}\right )}{3 d^{6} x^{3}}+\frac {18 e^{3} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{d^{5} \sqrt {d^{2}}}-\frac {93 e^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 d^{6} \left (x +\frac {d}{e}\right )}-\frac {13 e \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 d^{5} \left (x +\frac {d}{e}\right )^{2}}-\frac {2 \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 d^{4} \left (x +\frac {d}{e}\right )^{3}}\) \(216\)
default \(-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3 d^{6} x^{3}}-\frac {4 e \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{2 d^{2} x^{2}}-\frac {e^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )}{2 d^{2}}\right )}{d^{5}}-\frac {20 e^{3} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )}{d^{7}}+\frac {10 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{d^{2} x}-\frac {2 e^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{d^{2}}\right )}{d^{6}}+\frac {-\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{5 d e \left (x +\frac {d}{e}\right )^{4}}-\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{15 d^{2} \left (x +\frac {d}{e}\right )^{3}}}{d^{4}}-\frac {4 \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{3 d^{6} \left (x +\frac {d}{e}\right )^{3}}+\frac {10 e^{2} \left (-\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{d e \left (x +\frac {d}{e}\right )^{2}}-\frac {e \left (\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}+\frac {d e \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{\sqrt {e^{2}}}\right )}{d}\right )}{d^{6}}+\frac {20 e^{3} \left (\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}+\frac {d e \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{\sqrt {e^{2}}}\right )}{d^{7}}\) \(620\)

[In]

int((-e^2*x^2+d^2)^(1/2)/x^4/(e*x+d)^4,x,method=_RETURNVERBOSE)

[Out]

-1/3*(-e^2*x^2+d^2)^(1/2)*(29*e^2*x^2-6*d*e*x+d^2)/d^6/x^3+18/d^5*e^3/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^
2*x^2+d^2)^(1/2))/x)-93/5/d^6*e^2/(x+d/e)*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-13/5/d^5*e/(x+d/e)^2*(-(x+d/e)^
2*e^2+2*d*e*(x+d/e))^(1/2)-2/5/d^4/(x+d/e)^3*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=-\frac {324 \, e^{6} x^{6} + 972 \, d e^{5} x^{5} + 972 \, d^{2} e^{4} x^{4} + 324 \, d^{3} e^{3} x^{3} + 270 \, {\left (e^{6} x^{6} + 3 \, d e^{5} x^{5} + 3 \, d^{2} e^{4} x^{4} + d^{3} e^{3} x^{3}\right )} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) + {\left (424 \, e^{5} x^{5} + 1002 \, d e^{4} x^{4} + 674 \, d^{2} e^{3} x^{3} + 70 \, d^{3} e^{2} x^{2} - 15 \, d^{4} e x + 5 \, d^{5}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{15 \, {\left (d^{6} e^{3} x^{6} + 3 \, d^{7} e^{2} x^{5} + 3 \, d^{8} e x^{4} + d^{9} x^{3}\right )}} \]

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x^4/(e*x+d)^4,x, algorithm="fricas")

[Out]

-1/15*(324*e^6*x^6 + 972*d*e^5*x^5 + 972*d^2*e^4*x^4 + 324*d^3*e^3*x^3 + 270*(e^6*x^6 + 3*d*e^5*x^5 + 3*d^2*e^
4*x^4 + d^3*e^3*x^3)*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + (424*e^5*x^5 + 1002*d*e^4*x^4 + 674*d^2*e^3*x^3 + 70
*d^3*e^2*x^2 - 15*d^4*e*x + 5*d^5)*sqrt(-e^2*x^2 + d^2))/(d^6*e^3*x^6 + 3*d^7*e^2*x^5 + 3*d^8*e*x^4 + d^9*x^3)

Sympy [F]

\[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=\int \frac {\sqrt {- \left (- d + e x\right ) \left (d + e x\right )}}{x^{4} \left (d + e x\right )^{4}}\, dx \]

[In]

integrate((-e**2*x**2+d**2)**(1/2)/x**4/(e*x+d)**4,x)

[Out]

Integral(sqrt(-(-d + e*x)*(d + e*x))/(x**4*(d + e*x)**4), x)

Maxima [F]

\[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=\int { \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{{\left (e x + d\right )}^{4} x^{4}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x^4/(e*x+d)^4,x, algorithm="maxima")

[Out]

integrate(sqrt(-e^2*x^2 + d^2)/((e*x + d)^4*x^4), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 444 vs. \(2 (187) = 374\).

Time = 0.31 (sec) , antiderivative size = 444, normalized size of antiderivative = 2.11 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=\frac {18 \, e^{4} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |} \right |}}{2 \, e^{2} {\left | x \right |}}\right )}{d^{6} {\left | e \right |}} + \frac {{\left (5 \, e^{4} - \frac {35 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} e^{2}}{x} + \frac {335 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2}}{x^{2}} + \frac {7559 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3}}{e^{2} x^{3}} + \frac {25195 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{4}}{e^{4} x^{4}} + \frac {36035 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{5}}{e^{6} x^{5}} + \frac {24225 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{6}}{e^{8} x^{6}} + \frac {6585 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{7}}{e^{10} x^{7}}\right )} e^{6} x^{3}}{120 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3} d^{6} {\left (\frac {d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}}{e^{2} x} + 1\right )}^{5} {\left | e \right |}} - \frac {\frac {117 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} d^{12} e^{4}}{x} - \frac {12 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2} d^{12} e^{2}}{x^{2}} + \frac {{\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3} d^{12}}{x^{3}}}{24 \, d^{18} e^{2} {\left | e \right |}} \]

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x^4/(e*x+d)^4,x, algorithm="giac")

[Out]

18*e^4*log(1/2*abs(-2*d*e - 2*sqrt(-e^2*x^2 + d^2)*abs(e))/(e^2*abs(x)))/(d^6*abs(e)) + 1/120*(5*e^4 - 35*(d*e
 + sqrt(-e^2*x^2 + d^2)*abs(e))*e^2/x + 335*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^2/x^2 + 7559*(d*e + sqrt(-e^2*
x^2 + d^2)*abs(e))^3/(e^2*x^3) + 25195*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^4/(e^4*x^4) + 36035*(d*e + sqrt(-e^
2*x^2 + d^2)*abs(e))^5/(e^6*x^5) + 24225*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^6/(e^8*x^6) + 6585*(d*e + sqrt(-e
^2*x^2 + d^2)*abs(e))^7/(e^10*x^7))*e^6*x^3/((d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^3*d^6*((d*e + sqrt(-e^2*x^2 +
 d^2)*abs(e))/(e^2*x) + 1)^5*abs(e)) - 1/24*(117*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))*d^12*e^4/x - 12*(d*e + sq
rt(-e^2*x^2 + d^2)*abs(e))^2*d^12*e^2/x^2 + (d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^3*d^12/x^3)/(d^18*e^2*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^4 (d+e x)^4} \, dx=\int \frac {\sqrt {d^2-e^2\,x^2}}{x^4\,{\left (d+e\,x\right )}^4} \,d x \]

[In]

int((d^2 - e^2*x^2)^(1/2)/(x^4*(d + e*x)^4),x)

[Out]

int((d^2 - e^2*x^2)^(1/2)/(x^4*(d + e*x)^4), x)